PINV
 
 The PINV node is based on a numpy or scipy function. The description of that function is as follows:
    Compute the (Moore-Penrose) pseudo-inverse of a matrix.
    Calculate the generalized inverse of a matrix using its singular-value decomposition (SVD) and including all **large** singular values.
.. versionchanged:: 1.14
    Can now operate on stacks of matrices  Params:    a : (..., M, N) array_like  Matrix or stack of matrices to be pseudo-inverted.   rcond : (...) array_like of float  Cutoff for small singular values.
Singular values less than or equal to "rcond * largest_singular_value" are set to zero.
Broadcasts against the stack of matrices.   hermitian : bool  If True, "a" is assumed to be Hermitian (symmetric if real-valued), enabling a more
efficient method for finding singular values.
Defaults to False.   .. versionadded : : 1.17.0       Returns:    out : DataContainer  type 'ordered pair', 'scalar', or 'matrix'    
 
   Python Code
from flojoy import flojoy, Matrix, Scalar
import numpy as np
import numpy.linalg
@flojoy
def PINV(
    default: Matrix,
    rcond: float = 1e-15,
    hermitian: bool = False,
) -> Matrix | Scalar:
    """The PINV node is based on a numpy or scipy function.
    The description of that function is as follows:
        Compute the (Moore-Penrose) pseudo-inverse of a matrix.
        Calculate the generalized inverse of a matrix using its singular-value decomposition (SVD) and including all **large** singular values.
    .. versionchanged:: 1.14
        Can now operate on stacks of matrices
    Parameters
    ----------
    a : (..., M, N) array_like
        Matrix or stack of matrices to be pseudo-inverted.
    rcond : (...) array_like of float
        Cutoff for small singular values.
        Singular values less than or equal to "rcond * largest_singular_value" are set to zero.
        Broadcasts against the stack of matrices.
    hermitian : bool, optional
        If True, "a" is assumed to be Hermitian (symmetric if real-valued), enabling a more
        efficient method for finding singular values.
        Defaults to False.
    .. versionadded:: 1.17.0
    Returns
    -------
    DataContainer
        type 'ordered pair', 'scalar', or 'matrix'
    """
    result = numpy.linalg.pinv(
        a=default.m,
        rcond=rcond,
        hermitian=hermitian,
    )
    if isinstance(result, np.ndarray):
        result = Matrix(m=result)
    else:
        assert isinstance(
            result, np.number | float | int
        ), f"Expected np.number, float or int for result, got {type(result)}"
        result = Scalar(c=float(result))
    return result