DIVIDE
 
 Divide two or more numeric arrays, matrices, dataframes, or constants element-wise. When a constant is divided into an array or matrix, each element in the array or matrix will be divided by the constant value.  Params:    a : OrderedPair|Scalar|Vector  The input that will be divided by b.   b : OrderedPair|Scalar|Vector  The input that will divide a.     Returns:    out : OrderedPair|Scalar|Vector  OrderedPair if a is an OrderedPair.
x: the x-axis of input a.
y: the result of the division of input a by input b.
Scalar if a is a Scalar.
c: the result of the division of input a by input b.
Vector if a is a Vector.
v: the result of the division of input a by input b.    
   Python Code
import numpy as np
from flojoy import flojoy, OrderedPair, Scalar, Vector
from blocks.MATH.ARITHMETIC.utils.arithmetic_utils import get_val
from functools import reduce
@flojoy
def DIVIDE(
    a: OrderedPair | Scalar | Vector, b: list[OrderedPair | Scalar | Vector]
) -> OrderedPair | Scalar | Vector:
    """Divide two or more numeric arrays, matrices, dataframes, or constants element-wise.
    When a constant is divided into an array or matrix, each element in the array or matrix will be divided by the constant value.
    Parameters
    ----------
    a : OrderedPair|Scalar|Vector
        The input that will be divided by b.
    b : OrderedPair|Scalar|Vector
        The input that will divide a.
    Returns
    -------
    OrderedPair|Scalar|Vector
        OrderedPair if a is an OrderedPair.
        x: the x-axis of input a.
        y: the result of the division of input a by input b.
        Scalar if a is a Scalar.
        c: the result of the division of input a by input b.
        Vector if a is a Vector.
        v: the result of the division of input a by input b.
    """
    initial = get_val(a)
    seq = map(lambda dc: get_val(dc), b)
    y = reduce(lambda u, v: np.divide(u, v), seq, initial)
    match a:
        case OrderedPair():
            return OrderedPair(x=a.x, y=y)
        case Vector():
            return Vector(v=y)
        case Scalar():
            return Scalar(c=y)
Example
Having problems with this example app? Join our Discord community and we will help you out!
In this example we use DIVIDE to undo the effects of a SINE node.
We first generate two sine functions using LINSPACE and SINE nodes, and then use DIVIDE node to cancel them out which generates a flat scatter plot in SCATTER node.